Quantifying the surface properties of enzymatically-made porous starches

The behavior of starch during processing and its performance in products is influenced by the surface energetics/structure of the constituent particles. This work investigates the effect of enzymatically-produced porous maize starch particles on their energetic surface properties using inverse gas chromatography-based surface energy analysis (SEA). Three modified maize starch samples treated with amylase (AM), glucoamylase (AMG) and cyclodextrin-glycosyltransferase (CGT), were used for the study. The dispersive surface energy varied from 36.71 (native) to 43.34 mJ/m2 (AMG < CGT < AM). Enzyme catalysis resulted in porous starches with a more acidic (AMG) and a more basic (AM) surfaces. CGT exhibited similar acid-base balance as native starch but with higher concentration of active sites on the surface. This is the first study on the surface energy of enzymatically-treated porous starch materials using SEA, revealing significant information regarding the surface interactions that can affect performance of food and pharmaceutical products.

Saved in:
Bibliographic Details
Main Authors: Martínez-Alejo, Juan Manuel, Benavent Gil, Yaiza, Rosell, Cristina M., Carvajal,Teresa, Martínez, Mario M.
Other Authors: Ministerio de Economía y Competitividad (España)
Format: artículo biblioteca
Language:English
Published: Elsevier 2018-08-10
Subjects:Surface energetics, Porous starch, Starch structure, Enzymes, Inverse gas chromatography, Water-sorption,
Online Access:http://hdl.handle.net/10261/168931
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The behavior of starch during processing and its performance in products is influenced by the surface energetics/structure of the constituent particles. This work investigates the effect of enzymatically-produced porous maize starch particles on their energetic surface properties using inverse gas chromatography-based surface energy analysis (SEA). Three modified maize starch samples treated with amylase (AM), glucoamylase (AMG) and cyclodextrin-glycosyltransferase (CGT), were used for the study. The dispersive surface energy varied from 36.71 (native) to 43.34 mJ/m2 (AMG < CGT < AM). Enzyme catalysis resulted in porous starches with a more acidic (AMG) and a more basic (AM) surfaces. CGT exhibited similar acid-base balance as native starch but with higher concentration of active sites on the surface. This is the first study on the surface energy of enzymatically-treated porous starch materials using SEA, revealing significant information regarding the surface interactions that can affect performance of food and pharmaceutical products.