Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin marten and lynx in the northern appalachians

Assessing the effects of climate change on threatened species requires moving beyond simple bioclimatic models to models that incorporate interactions among climatic trends, landscape change, environmental stochasticity, and species life history. Populations of marten (Martes americana) and lynx (Lynx canadensis) in southeastern Canada and the northeastern United States represent peninsular extensions of boreal ranges and illustrate the potential impact of these threats on semi-isolated populations at the range margin. Decreased snowfall may affect marten and lynx through decreased prey vulnerability and decreased competitive advantage over sympatric carnivores. I used a spatially explicit population model to assess potential effects of predicted changes in snowfall by 2055 on regional marten and lynx populations. The models' habitat rankings were derived from previous static models that correlated regional distribution with snowfall and vegetation data. Trapping scenarios were parameterized as a 10% proportional decrease in survival, and logging scenarios were parameterized as a 10% decrease in the extent of older coniferous or mixed forest.

Saved in:
Bibliographic Details
Main Author: Carroll, Carlos autor/a
Format: Texto biblioteca
Language:eng
Subjects:Deforestación, Martes americana, Lynx canadensis, Especies en peligro de extinción, Cambio climático, Caza,
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assessing the effects of climate change on threatened species requires moving beyond simple bioclimatic models to models that incorporate interactions among climatic trends, landscape change, environmental stochasticity, and species life history. Populations of marten (Martes americana) and lynx (Lynx canadensis) in southeastern Canada and the northeastern United States represent peninsular extensions of boreal ranges and illustrate the potential impact of these threats on semi-isolated populations at the range margin. Decreased snowfall may affect marten and lynx through decreased prey vulnerability and decreased competitive advantage over sympatric carnivores. I used a spatially explicit population model to assess potential effects of predicted changes in snowfall by 2055 on regional marten and lynx populations. The models' habitat rankings were derived from previous static models that correlated regional distribution with snowfall and vegetation data. Trapping scenarios were parameterized as a 10% proportional decrease in survival, and logging scenarios were parameterized as a 10% decrease in the extent of older coniferous or mixed forest.