Genetic control of grain yield and nitrogen use efficiency in tropical maize
The objectives of this work were to study the genetic control of grain yield (GY) and nitrogen (N) use efficiency (NUE, grain yield/N applied) and its primary components, N uptake efficiency (NUpE, N uptake/N applied) and N utilization efficiency (NUtE, grain yield/N uptake), in maize grown in environments with high and low N availability. Experiments with 31 maize genotypes (28 hybrid crosses and three controls) were carried out in soils with high and low N rates, in the southeast of the state of Minas Gerais, Brazil. There was a reduction of 23.2% in average GY for maize grown in soil with low N, in comparison to that obtained with high N. There were 26.5, 199 and 400% increases in NUtE, NUpE, and NUE, respectively, for maize grown with low N. The general combining ability (GCA) and specific combining ability (SCA) were significant for GY, NUE and NUpE for maize grown in high N soil. Only GCA was significant for NUpE for maize grown in low N soil. The GCA and SCA for NUtE were not significant in either environment. Additive and non-additive genetic effects are responsible for the genetic control of NUE and GY for maize grown in soils with high N availability, although additive effects are more important.
Main Authors: | , , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Embrapa Secretaria de Pesquisa e Desenvolvimento
2008
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-204X2008001100010 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objectives of this work were to study the genetic control of grain yield (GY) and nitrogen (N) use efficiency (NUE, grain yield/N applied) and its primary components, N uptake efficiency (NUpE, N uptake/N applied) and N utilization efficiency (NUtE, grain yield/N uptake), in maize grown in environments with high and low N availability. Experiments with 31 maize genotypes (28 hybrid crosses and three controls) were carried out in soils with high and low N rates, in the southeast of the state of Minas Gerais, Brazil. There was a reduction of 23.2% in average GY for maize grown in soil with low N, in comparison to that obtained with high N. There were 26.5, 199 and 400% increases in NUtE, NUpE, and NUE, respectively, for maize grown with low N. The general combining ability (GCA) and specific combining ability (SCA) were significant for GY, NUE and NUpE for maize grown in high N soil. Only GCA was significant for NUpE for maize grown in low N soil. The GCA and SCA for NUtE were not significant in either environment. Additive and non-additive genetic effects are responsible for the genetic control of NUE and GY for maize grown in soils with high N availability, although additive effects are more important. |
---|