End-to-end learned early classification of time series for in-season crop type mapping
Remote sensing satellites capture the cyclic dynamics of our Planet in regular time intervals recorded in satellite time series data. End-to-end trained deep learning models use this time series data to make predictions at a large scale, for instance, to produce up-to-date crop cover maps. Most time series classification approaches focus on the accuracy of predictions. However, the earliness of the prediction is also of great importance since coming to an early decision can make a crucial difference in time-sensitive applications. In this work, we present an End-to-End Learned Early Classification of Time Series (ELECTS) model that estimates a classification score and a probability of whether sufficient data has been observed to come to an early and still accurate decision. ELECTS is modular: any deep time series classification model can adopt the ELECTS conceptual idea by adding a second prediction head that outputs a probability of stopping the classification. The ELECTS loss function then optimizes the overall model on a balanced objective of earliness and accuracy. Our experiments on four crop classification datasets from Europe and Africa show that ELECTS allows reaching state-of-the-art accuracy while reducing the quantity of data massively to be downloaded, stored, and processed. The source code is available at https://github.com/marccoru/elects.
Main Authors: | , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Crop type mapping, Deep learning, Early classification, In-season crop type mapping, Satellite time series, |
Online Access: | https://research.wur.nl/en/publications/end-to-end-learned-early-classification-of-time-series-for-in-sea |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-631207 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-6312072024-07-09 Rußwurm, Marc Courty, Nicolas Emonet, Rémi Lefèvre, Sébastien Tuia, Devis Tavenard, Romain Article/Letter to editor ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) ISSN: 0924-2716 End-to-end learned early classification of time series for in-season crop type mapping 2023 Remote sensing satellites capture the cyclic dynamics of our Planet in regular time intervals recorded in satellite time series data. End-to-end trained deep learning models use this time series data to make predictions at a large scale, for instance, to produce up-to-date crop cover maps. Most time series classification approaches focus on the accuracy of predictions. However, the earliness of the prediction is also of great importance since coming to an early decision can make a crucial difference in time-sensitive applications. In this work, we present an End-to-End Learned Early Classification of Time Series (ELECTS) model that estimates a classification score and a probability of whether sufficient data has been observed to come to an early and still accurate decision. ELECTS is modular: any deep time series classification model can adopt the ELECTS conceptual idea by adding a second prediction head that outputs a probability of stopping the classification. The ELECTS loss function then optimizes the overall model on a balanced objective of earliness and accuracy. Our experiments on four crop classification datasets from Europe and Africa show that ELECTS allows reaching state-of-the-art accuracy while reducing the quantity of data massively to be downloaded, stored, and processed. The source code is available at https://github.com/marccoru/elects. en text/html https://research.wur.nl/en/publications/end-to-end-learned-early-classification-of-time-series-for-in-sea 10.1016/j.isprsjprs.2022.12.016 https://edepot.wur.nl/660499 Crop type mapping Deep learning Early classification In-season crop type mapping Satellite time series https://creativecommons.org/licenses/by/4.0/ Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
Crop type mapping Deep learning Early classification In-season crop type mapping Satellite time series Crop type mapping Deep learning Early classification In-season crop type mapping Satellite time series |
spellingShingle |
Crop type mapping Deep learning Early classification In-season crop type mapping Satellite time series Crop type mapping Deep learning Early classification In-season crop type mapping Satellite time series Rußwurm, Marc Courty, Nicolas Emonet, Rémi Lefèvre, Sébastien Tuia, Devis Tavenard, Romain End-to-end learned early classification of time series for in-season crop type mapping |
description |
Remote sensing satellites capture the cyclic dynamics of our Planet in regular time intervals recorded in satellite time series data. End-to-end trained deep learning models use this time series data to make predictions at a large scale, for instance, to produce up-to-date crop cover maps. Most time series classification approaches focus on the accuracy of predictions. However, the earliness of the prediction is also of great importance since coming to an early decision can make a crucial difference in time-sensitive applications. In this work, we present an End-to-End Learned Early Classification of Time Series (ELECTS) model that estimates a classification score and a probability of whether sufficient data has been observed to come to an early and still accurate decision. ELECTS is modular: any deep time series classification model can adopt the ELECTS conceptual idea by adding a second prediction head that outputs a probability of stopping the classification. The ELECTS loss function then optimizes the overall model on a balanced objective of earliness and accuracy. Our experiments on four crop classification datasets from Europe and Africa show that ELECTS allows reaching state-of-the-art accuracy while reducing the quantity of data massively to be downloaded, stored, and processed. The source code is available at https://github.com/marccoru/elects. |
format |
Article/Letter to editor |
topic_facet |
Crop type mapping Deep learning Early classification In-season crop type mapping Satellite time series |
author |
Rußwurm, Marc Courty, Nicolas Emonet, Rémi Lefèvre, Sébastien Tuia, Devis Tavenard, Romain |
author_facet |
Rußwurm, Marc Courty, Nicolas Emonet, Rémi Lefèvre, Sébastien Tuia, Devis Tavenard, Romain |
author_sort |
Rußwurm, Marc |
title |
End-to-end learned early classification of time series for in-season crop type mapping |
title_short |
End-to-end learned early classification of time series for in-season crop type mapping |
title_full |
End-to-end learned early classification of time series for in-season crop type mapping |
title_fullStr |
End-to-end learned early classification of time series for in-season crop type mapping |
title_full_unstemmed |
End-to-end learned early classification of time series for in-season crop type mapping |
title_sort |
end-to-end learned early classification of time series for in-season crop type mapping |
url |
https://research.wur.nl/en/publications/end-to-end-learned-early-classification-of-time-series-for-in-sea |
work_keys_str_mv |
AT rußwurmmarc endtoendlearnedearlyclassificationoftimeseriesforinseasoncroptypemapping AT courtynicolas endtoendlearnedearlyclassificationoftimeseriesforinseasoncroptypemapping AT emonetremi endtoendlearnedearlyclassificationoftimeseriesforinseasoncroptypemapping AT lefevresebastien endtoendlearnedearlyclassificationoftimeseriesforinseasoncroptypemapping AT tuiadevis endtoendlearnedearlyclassificationoftimeseriesforinseasoncroptypemapping AT tavenardromain endtoendlearnedearlyclassificationoftimeseriesforinseasoncroptypemapping |
_version_ |
1813192426947346432 |