Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs
Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change.
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Life Science, |
Online Access: | https://research.wur.nl/en/publications/root-traits-explain-plant-species-distributions-along-climatic-gr |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-wur-nl-wurpubs-584448 |
---|---|
record_format |
koha |
spelling |
dig-wur-nl-wurpubs-5844482024-11-15 Laughlin, Daniel C. Mommer, Liesje Sabatini, Francesco Maria Bruelheide, Helge Kuyper, Thom W. McCormack, Luke Bergmann, Joana Freschet, Grégoire T. Guerrero-Ramírez, Nathaly R. Iversen, Colleen M. Kattge, Jens Meier, Ina C. Poorter, Hendrik Roumet, Catherine Semchenko, Marina Sweeney, Christopher J. Valverde-Barrantes, Oscar J. van der Plas, Fons van Ruijven, Jasper York, Larry M. Aubin, Isabelle Burge, Olivia R. Byun, Chaeho Ćušterevska, Renata Dengler, Jürgen Forey, Estelle Guerin, Greg R. Hérault, Bruno Jackson, Robert B. Karger, Dirk Nikolaus Lenoir, Jonathan Lysenko, Tatiana Meir, Patrick Niinemets, Ülo Ozinga, Wim A. Peñuelas, Josep Reich, Peter B. Schmidt, Marco Schrodt, Franziska Velázquez, Eduardo Weigelt, Alexandra Article/Letter to editor Nature Ecology and Evolution 5 (2021) 8 ISSN: 2397-334X Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs 2021 Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change. en application/pdf https://research.wur.nl/en/publications/root-traits-explain-plant-species-distributions-along-climatic-gr 10.1038/s41559-021-01471-7 https://edepot.wur.nl/549902 Life Science Wageningen University & Research |
institution |
WUR NL |
collection |
DSpace |
country |
Países bajos |
countrycode |
NL |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-wur-nl |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
WUR Library Netherlands |
language |
English |
topic |
Life Science Life Science |
spellingShingle |
Life Science Life Science Laughlin, Daniel C. Mommer, Liesje Sabatini, Francesco Maria Bruelheide, Helge Kuyper, Thom W. McCormack, Luke Bergmann, Joana Freschet, Grégoire T. Guerrero-Ramírez, Nathaly R. Iversen, Colleen M. Kattge, Jens Meier, Ina C. Poorter, Hendrik Roumet, Catherine Semchenko, Marina Sweeney, Christopher J. Valverde-Barrantes, Oscar J. van der Plas, Fons van Ruijven, Jasper York, Larry M. Aubin, Isabelle Burge, Olivia R. Byun, Chaeho Ćušterevska, Renata Dengler, Jürgen Forey, Estelle Guerin, Greg R. Hérault, Bruno Jackson, Robert B. Karger, Dirk Nikolaus Lenoir, Jonathan Lysenko, Tatiana Meir, Patrick Niinemets, Ülo Ozinga, Wim A. Peñuelas, Josep Reich, Peter B. Schmidt, Marco Schrodt, Franziska Velázquez, Eduardo Weigelt, Alexandra Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs |
description |
Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end. Here, we show that root traits explain species occurrences along broad gradients of temperature and water availability, but model predictions only resembled trade-offs in two out of 24 models. Forest species with low specific root length and high root tissue density (RTD) were more likely to occur in warm climates but species with high specific root length and low RTD were more likely to occur in cold climates. Unidirectional benefits were more prevalent than trade-offs: for example, species with large-diameter roots and high RTD were more commonly associated with dry climates, but species with the opposite trait values were not associated with wet climates. Directional selection for traits consistently occurred in cold or dry climates, whereas a diversity of root trait values were equally viable in warm or wet climates. Explicit integration of unidirectional benefits into ecological theory is needed to advance our understanding of the consequences of trait variation on species responses to environmental change. |
format |
Article/Letter to editor |
topic_facet |
Life Science |
author |
Laughlin, Daniel C. Mommer, Liesje Sabatini, Francesco Maria Bruelheide, Helge Kuyper, Thom W. McCormack, Luke Bergmann, Joana Freschet, Grégoire T. Guerrero-Ramírez, Nathaly R. Iversen, Colleen M. Kattge, Jens Meier, Ina C. Poorter, Hendrik Roumet, Catherine Semchenko, Marina Sweeney, Christopher J. Valverde-Barrantes, Oscar J. van der Plas, Fons van Ruijven, Jasper York, Larry M. Aubin, Isabelle Burge, Olivia R. Byun, Chaeho Ćušterevska, Renata Dengler, Jürgen Forey, Estelle Guerin, Greg R. Hérault, Bruno Jackson, Robert B. Karger, Dirk Nikolaus Lenoir, Jonathan Lysenko, Tatiana Meir, Patrick Niinemets, Ülo Ozinga, Wim A. Peñuelas, Josep Reich, Peter B. Schmidt, Marco Schrodt, Franziska Velázquez, Eduardo Weigelt, Alexandra |
author_facet |
Laughlin, Daniel C. Mommer, Liesje Sabatini, Francesco Maria Bruelheide, Helge Kuyper, Thom W. McCormack, Luke Bergmann, Joana Freschet, Grégoire T. Guerrero-Ramírez, Nathaly R. Iversen, Colleen M. Kattge, Jens Meier, Ina C. Poorter, Hendrik Roumet, Catherine Semchenko, Marina Sweeney, Christopher J. Valverde-Barrantes, Oscar J. van der Plas, Fons van Ruijven, Jasper York, Larry M. Aubin, Isabelle Burge, Olivia R. Byun, Chaeho Ćušterevska, Renata Dengler, Jürgen Forey, Estelle Guerin, Greg R. Hérault, Bruno Jackson, Robert B. Karger, Dirk Nikolaus Lenoir, Jonathan Lysenko, Tatiana Meir, Patrick Niinemets, Ülo Ozinga, Wim A. Peñuelas, Josep Reich, Peter B. Schmidt, Marco Schrodt, Franziska Velázquez, Eduardo Weigelt, Alexandra |
author_sort |
Laughlin, Daniel C. |
title |
Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs |
title_short |
Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs |
title_full |
Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs |
title_fullStr |
Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs |
title_full_unstemmed |
Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs |
title_sort |
root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs |
url |
https://research.wur.nl/en/publications/root-traits-explain-plant-species-distributions-along-climatic-gr |
work_keys_str_mv |
AT laughlindanielc roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT mommerliesje roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT sabatinifrancescomaria roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT bruelheidehelge roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT kuyperthomw roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT mccormackluke roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT bergmannjoana roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT freschetgregoiret roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT guerreroramireznathalyr roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT iversencolleenm roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT kattgejens roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT meierinac roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT poorterhendrik roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT roumetcatherine roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT semchenkomarina roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT sweeneychristopherj roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT valverdebarrantesoscarj roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT vanderplasfons roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT vanruijvenjasper roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT yorklarrym roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT aubinisabelle roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT burgeoliviar roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT byunchaeho roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT custerevskarenata roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT denglerjurgen roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT foreyestelle roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT gueringregr roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT heraultbruno roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT jacksonrobertb roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT kargerdirknikolaus roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT lenoirjonathan roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT lysenkotatiana roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT meirpatrick roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT niinemetsulo roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT ozingawima roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT penuelasjosep roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT reichpeterb roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT schmidtmarco roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT schrodtfranziska roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT velazquezeduardo roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs AT weigeltalexandra roottraitsexplainplantspeciesdistributionsalongclimaticgradientsyetchallengethenatureofecologicaltradeoffs |
_version_ |
1816153843697713152 |