Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms
A common pattern emerging from studies on the relationship between plant diversity and ecosystem functioning is that productivity increases with diversity. Most of these studies have been carried out in perennial grasslands, but many lasted only two growing seasons or reported data from a single year. Especially for perennial plant communities, however, the long-term effects of diversity are important. The question whether interactions between few species or among many species lead to increased productivity remained largely unanswered. So far, the main mechanism addressed is the increased input of nitrogen by nitrogen-fixing legumes. We report that other mechanisms can also generate strong increases of productivity with diversity. Results from 4 consecutive years of a plant diversity experiment without legumes show that a positive relationship between plant species richness and productivity emerged in the second year and strengthened with time. We show that increased nutrient use efficiency at high species richness is an important underlying mechanism. This mechanism had not been discussed in earlier studies. Furthermore, our results suggest that complementary nutrient uptake in space and time is important. Together, these mechanisms sustain consistently high productivity at high diversity. biodiversity | niche complementarity | nitrogen use efficiency | ecosystem functioning
Main Authors: | , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | biodiversity experiments, competition, complementarity, different rooting depths, ecosystem productivity, elevated co2, european grasslands, experimental plant-communities, grassland communities, species-diversity, |
Online Access: | https://research.wur.nl/en/publications/diversity-productivity-relationships-initial-effects-long-term-pa |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A common pattern emerging from studies on the relationship between plant diversity and ecosystem functioning is that productivity increases with diversity. Most of these studies have been carried out in perennial grasslands, but many lasted only two growing seasons or reported data from a single year. Especially for perennial plant communities, however, the long-term effects of diversity are important. The question whether interactions between few species or among many species lead to increased productivity remained largely unanswered. So far, the main mechanism addressed is the increased input of nitrogen by nitrogen-fixing legumes. We report that other mechanisms can also generate strong increases of productivity with diversity. Results from 4 consecutive years of a plant diversity experiment without legumes show that a positive relationship between plant species richness and productivity emerged in the second year and strengthened with time. We show that increased nutrient use efficiency at high species richness is an important underlying mechanism. This mechanism had not been discussed in earlier studies. Furthermore, our results suggest that complementary nutrient uptake in space and time is important. Together, these mechanisms sustain consistently high productivity at high diversity. biodiversity | niche complementarity | nitrogen use efficiency | ecosystem functioning |
---|