An isotopic exchange method for the characterization of the irreversibility of pesticide sorption-desorption in soil

An isotopic exchange method is presented that characterizes the irreversibility of pesticide sorption-desorption by soil observed in batch equilibration experiments. The isotopic exchange of (12)C- and (14)C-labeled triadimefon [(1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1, 2,4-triazol-1-yl)-2-butanone] and imidacloprid-guanidine [1-[(6-chloro-3-pyridinyl)methyl]-4,5-dihydro-1H-imidazol-2-amine] in Hanford sandy loam soil indicated that these systems can be described by a two-compartment model in which about 90% of sorption occurs on reversible, easily desorbable sites, whereas 10% of the sorbed molecules are irreversibly sorbed on soil and do not participate in the sorption-desorption equilibrium. This model closely predicted the hysteresis observed in the desorption isotherms from batch equilibration experiments. The isotopic exchange of triadimefon and imidacloprid-guanidine in Drummer silty clay loam soil indicated that there was a fraction of the sorbed (14)C-labeled pesticide that was resistant to desorption, which increased as pesticide concentration decreased and was higher for triadimefon than for imidacloprid-guanidine. In contrast, the batch equilibration method resulted in ill-defined desorption isotherms for the Drummer soil, which made accurate desorption characterization problematic.

Saved in:
Bibliographic Details
Main Authors: Celis, R., Koskinen, W. C.
Format: artículo biblioteca
Language:English
Published: American Chemical Society 1999
Online Access:http://hdl.handle.net/10261/60820
Tags: Add Tag
No Tags, Be the first to tag this record!