Short-term exposure to environmental levels of nicotine and cotinine impairs visual motor response in zebrafish larvae through a similar mode of action: Exploring the potential role of zebrafish α7 nAChR

The current view is that environmental levels of nicotine and cotinine, commonly in the ng/L range, are safe for aquatic organisms. In this study, 7 days post-fertilization zebrafish embryos have been exposed for 24 h to a range of environmental concentrations of nicotine (2.0 ng/L-2.5 μg/L) and cotinine (50 pg/L–10 μg/L), as well as to a binary mixture of these emerging pollutants. Nicotine exposure led to hyperactivity, decreased vibrational startle response and increased non-associative learning. However, the more consistent effect found for both nicotine and cotinine was a significant increase in light-off visual motor response (VMR). The effect of both pollutants on this behavior occurred through a similar mode of action, as the joint effects of the binary mixture of both chemicals were consistent with the concentration addition concept predictions. The results from docking studies suggest that the effect of nicotine and cotinine on light-off VMR could be mediated by zebrafish α7 nAChR expressed in retina. The results presented in this study emphasize the need to revisit the environmental risk assessment of chemicals including additional ecologically relevant sublethal endpoints.

Saved in:
Bibliographic Details
Main Authors: Bellot, Marina, Manen, Leticia, Prats, Eva, Bedrossiantz, Juliette, Barata Martí, Carlos, Gómez-Canela, Cristian, Antolin, Albert A., Raldúa, Demetrio
Other Authors: Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Format: artículo biblioteca
Language:English
Published: Elsevier 2024-02-20
Subjects:Nicotinic acetylcholine receptor, Behavior, Cotinine, Fish larvae, Nicotine, http://metadata.un.org/sdg/3, Ensure healthy lives and promote well-being for all at all ages,
Online Access:http://hdl.handle.net/10261/341796
https://api.elsevier.com/content/abstract/scopus_id/85179891632
Tags: Add Tag
No Tags, Be the first to tag this record!