Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory

We are performing a series of coupled hydro-mechanical (HM) simulations to model CO2 flow through Opalinus Clay at the Mont Terri rock laboratory in the CO2 Long-term Periodic Injection Experiment (CO2LPIE). CO2LPIE aims at inter-disciplinary investigations of the caprock sealing capacity in geologic CO2 storage in a highly monitored environment at the underground laboratory scale. Numerical modeling allows us to gain knowledge on the dynamic processes resulting from CO2 periodic injection and to assist the experimental design. The cyclic injection parameters (i.e., the period and the amplitude) have to be optimized for the field experiment and therefore different values are taken into account. Opalinus Clay is a claystone with nanoDarcy permeability that contains well developed bedding planes responsible for its anisotropic HM behavior. The hydraulic anisotropy is defined by a permeability parallel to the bedding planes being three times the one perpendicular to it. Additionally, the drained Young’s modulus is measured to be 1.7 GPa parallel and 2.1 GPa perpendicular to bedding. Excavation reports by swisstopo document a SSEdip of 45° for the bedding planes at the experiment location. CO2 injection generates a mean overpressure of 1 MPa into the brine that propagates into the formation. The differential pressure between CO2 and formation water, i.e., capillary pressure, is lower than the entry pressure and thus, CO2 diffuses through the pores but does not advect in free phase. The liquid overpressure distribution is distorted by the hydraulic anisotropy, preferentially advancing along the bedding planes, as the associated permeability is higher than the one perpendicular to the bedding. The pore pressure buildup induces a poromechanical stress increase and an expansion of the rock that leads to a permeability enhancement of up to two orders of magnitude. The cyclic stimulation propagates trough the domain faster and with a lag time and an attenuation, both of which increase with distance from the source with, their values being dependent on permeability, porosity and stiffness of the rock. As a result of the model orthotropy, the attenuation and the lag time change with direction, i.e. they are higher in the direction perpendicular to the bedding and lower in the direction parallel to the bedding.

Saved in:
Bibliographic Details
Main Authors: Sciandra, Dario, Vilarrasa, Víctor, Rahimzadeh Kivi, I., Makhnenko, R., Nussbaum, C., Rebscher, D.
Other Authors: Vilarrasa, Víctor [0000-0003-1169-4469]
Format: comunicación de congreso biblioteca
Language:English
Published: 2021-04-19
Subjects:CO2, Caprock,
Online Access:http://hdl.handle.net/10261/246839
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-idaea-es-10261-246839
record_format koha
spelling dig-idaea-es-10261-2468392021-07-30T06:25:07Z Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory Sciandra, Dario Vilarrasa, Víctor Rahimzadeh Kivi, I. Makhnenko, R. Nussbaum, C. Rebscher, D. Vilarrasa, Víctor [0000-0003-1169-4469] CO2 Caprock We are performing a series of coupled hydro-mechanical (HM) simulations to model CO2 flow through Opalinus Clay at the Mont Terri rock laboratory in the CO2 Long-term Periodic Injection Experiment (CO2LPIE). CO2LPIE aims at inter-disciplinary investigations of the caprock sealing capacity in geologic CO2 storage in a highly monitored environment at the underground laboratory scale. Numerical modeling allows us to gain knowledge on the dynamic processes resulting from CO2 periodic injection and to assist the experimental design. The cyclic injection parameters (i.e., the period and the amplitude) have to be optimized for the field experiment and therefore different values are taken into account. Opalinus Clay is a claystone with nanoDarcy permeability that contains well developed bedding planes responsible for its anisotropic HM behavior. The hydraulic anisotropy is defined by a permeability parallel to the bedding planes being three times the one perpendicular to it. Additionally, the drained Young’s modulus is measured to be 1.7 GPa parallel and 2.1 GPa perpendicular to bedding. Excavation reports by swisstopo document a SSEdip of 45° for the bedding planes at the experiment location. CO2 injection generates a mean overpressure of 1 MPa into the brine that propagates into the formation. The differential pressure between CO2 and formation water, i.e., capillary pressure, is lower than the entry pressure and thus, CO2 diffuses through the pores but does not advect in free phase. The liquid overpressure distribution is distorted by the hydraulic anisotropy, preferentially advancing along the bedding planes, as the associated permeability is higher than the one perpendicular to the bedding. The pore pressure buildup induces a poromechanical stress increase and an expansion of the rock that leads to a permeability enhancement of up to two orders of magnitude. The cyclic stimulation propagates trough the domain faster and with a lag time and an attenuation, both of which increase with distance from the source with, their values being dependent on permeability, porosity and stiffness of the rock. As a result of the model orthotropy, the attenuation and the lag time change with direction, i.e. they are higher in the direction perpendicular to the bedding and lower in the direction parallel to the bedding. Peer reviewed 2021-07-29T11:21:17Z 2021-07-29T11:21:17Z 2021-04-19 comunicación de congreso http://purl.org/coar/resource_type/c_5794 vEGU 2021: Gather Online, Geophysical Research Abstracts, Vol. 23, Vienna, Austria, 19-30 April 2021 http://hdl.handle.net/10261/246839 10.5194/egusphere-egu21-8982 en https://doi.org/10.5194/egusphere-egu21-8982 Sí open
institution IDAEA ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-idaea-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IDAEA España
language English
topic CO2
Caprock
CO2
Caprock
spellingShingle CO2
Caprock
CO2
Caprock
Sciandra, Dario
Vilarrasa, Víctor
Rahimzadeh Kivi, I.
Makhnenko, R.
Nussbaum, C.
Rebscher, D.
Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory
description We are performing a series of coupled hydro-mechanical (HM) simulations to model CO2 flow through Opalinus Clay at the Mont Terri rock laboratory in the CO2 Long-term Periodic Injection Experiment (CO2LPIE). CO2LPIE aims at inter-disciplinary investigations of the caprock sealing capacity in geologic CO2 storage in a highly monitored environment at the underground laboratory scale. Numerical modeling allows us to gain knowledge on the dynamic processes resulting from CO2 periodic injection and to assist the experimental design. The cyclic injection parameters (i.e., the period and the amplitude) have to be optimized for the field experiment and therefore different values are taken into account. Opalinus Clay is a claystone with nanoDarcy permeability that contains well developed bedding planes responsible for its anisotropic HM behavior. The hydraulic anisotropy is defined by a permeability parallel to the bedding planes being three times the one perpendicular to it. Additionally, the drained Young’s modulus is measured to be 1.7 GPa parallel and 2.1 GPa perpendicular to bedding. Excavation reports by swisstopo document a SSEdip of 45° for the bedding planes at the experiment location. CO2 injection generates a mean overpressure of 1 MPa into the brine that propagates into the formation. The differential pressure between CO2 and formation water, i.e., capillary pressure, is lower than the entry pressure and thus, CO2 diffuses through the pores but does not advect in free phase. The liquid overpressure distribution is distorted by the hydraulic anisotropy, preferentially advancing along the bedding planes, as the associated permeability is higher than the one perpendicular to the bedding. The pore pressure buildup induces a poromechanical stress increase and an expansion of the rock that leads to a permeability enhancement of up to two orders of magnitude. The cyclic stimulation propagates trough the domain faster and with a lag time and an attenuation, both of which increase with distance from the source with, their values being dependent on permeability, porosity and stiffness of the rock. As a result of the model orthotropy, the attenuation and the lag time change with direction, i.e. they are higher in the direction perpendicular to the bedding and lower in the direction parallel to the bedding.
author2 Vilarrasa, Víctor [0000-0003-1169-4469]
author_facet Vilarrasa, Víctor [0000-0003-1169-4469]
Sciandra, Dario
Vilarrasa, Víctor
Rahimzadeh Kivi, I.
Makhnenko, R.
Nussbaum, C.
Rebscher, D.
format comunicación de congreso
topic_facet CO2
Caprock
author Sciandra, Dario
Vilarrasa, Víctor
Rahimzadeh Kivi, I.
Makhnenko, R.
Nussbaum, C.
Rebscher, D.
author_sort Sciandra, Dario
title Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory
title_short Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory
title_full Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory
title_fullStr Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory
title_full_unstemmed Coupled HM modeling assists in designing CO2 long-term periodic injection experiment (CO2LPIE) in Mont Terri rock laboratory
title_sort coupled hm modeling assists in designing co2 long-term periodic injection experiment (co2lpie) in mont terri rock laboratory
publishDate 2021-04-19
url http://hdl.handle.net/10261/246839
work_keys_str_mv AT sciandradario coupledhmmodelingassistsindesigningco2longtermperiodicinjectionexperimentco2lpieinmontterrirocklaboratory
AT vilarrasavictor coupledhmmodelingassistsindesigningco2longtermperiodicinjectionexperimentco2lpieinmontterrirocklaboratory
AT rahimzadehkivii coupledhmmodelingassistsindesigningco2longtermperiodicinjectionexperimentco2lpieinmontterrirocklaboratory
AT makhnenkor coupledhmmodelingassistsindesigningco2longtermperiodicinjectionexperimentco2lpieinmontterrirocklaboratory
AT nussbaumc coupledhmmodelingassistsindesigningco2longtermperiodicinjectionexperimentco2lpieinmontterrirocklaboratory
AT rebscherd coupledhmmodelingassistsindesigningco2longtermperiodicinjectionexperimentco2lpieinmontterrirocklaboratory
_version_ 1777669539312435200