A diverse range of human gut bacteria have the potential to metabolize the dietary component gallic acid

The human gut microbiota contains a broad variety of bacteria that possess functional genes, with resultant metabolites that affect human physiology and therefore health. Dietary gallates are phenolic components that are present in many foods and beverages and are regarded as having health-promoting attributes. However, the potential for metabolism of these phenolic compounds by the human microbiota remains largely unknown. The emergence of high-throughput sequencing (HTS) technologies allows this issue to be addressed. In this study, HTS was used to assess the incidence of gallate-decarboxylating bacteria within the gut microbiota of healthy individuals for whom bacterial diversity was previously determined to be high. This process was facilitated by the design and application of degenerate PCR primers to amplify a region encoding the catalytic C subunit of gallate decarboxylase (LpdC) from total metagenomic DNA extracted from human fecal samples. HTS resulted in the generation of a total of 3,261,967 sequence reads and revealed that the primary gallate-decarboxylating microbial phyla in the intestinal microbiota were Firmicutes (74.6%), Proteobacteria (17.6%), and Actinobacteria (7.8%). These reads corresponded to 53 genera, i.e., 47% of the bacterial genera detected previously in these samples. Among these genera, Anaerostipes and Klebsiella accounted for the majority of reads (40%). The usefulness of the HTS-lpdC method was demonstrated by the production of pyrogallol from gallic acid, as expected for functional gallate decarboxylases, among representative strains belonging to species identified in the human gut microbiota by this method.

Saved in:
Bibliographic Details
Main Authors: Esteban-Torres, María, Santamaría, Laura, Cabrera-Rubio, Raúl, Plaza-Vinuesa, Laura, Crispie, Fiona, Rivas, Blanca de las, Cotter, Paul D., Muñoz, Rosario
Other Authors: Ministerio de Economía y Competitividad (España)
Format: artículo biblioteca
Language:English
Published: American Society for Microbiology 2018
Online Access:http://hdl.handle.net/10261/240986
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100003329
http://dx.doi.org/10.13039/501100002081
Tags: Add Tag
No Tags, Be the first to tag this record!