Differential DNA methylation of vocal and facial anatomy genes in modern humans
Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-associated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract.
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
Springer Nature
2020-03-04
|
Online Access: | http://hdl.handle.net/10261/218737 http://dx.doi.org/10.13039/100000001 http://dx.doi.org/10.13039/100000002 http://dx.doi.org/10.13039/501100003329 http://dx.doi.org/10.13039/100000011 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/100000952 http://dx.doi.org/10.13039/501100000781 http://dx.doi.org/10.13039/100011084 http://dx.doi.org/10.13039/100001388 http://dx.doi.org/10.13039/501100002809 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Changes in potential regulatory elements are thought to be key drivers of phenotypic divergence. However, identifying changes to regulatory elements that underlie human-specific traits has proven very challenging. Here, we use 63 reconstructed and experimentally measured DNA methylation maps of ancient and present-day humans, as well as of six chimpanzees, to detect differentially methylated regions that likely emerged in modern humans after the split from Neanderthals and Denisovans. We show that genes associated with face and vocal tract anatomy went through particularly extensive methylation changes. Specifically, we identify widespread hypermethylation in a network of face- and voice-associated genes (SOX9, ACAN, COL2A1, NFIX and XYLT1). We propose that these repression patterns appeared after the split from Neanderthals and Denisovans, and that they might have played a key role in shaping the modern human face and vocal tract. |
---|