Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual

Sorting of individual chromosomes by Flow Cytometry (flow-sorting) is an enrichment method to potentially simplify genome assembly by isolating chromosomes from the context of the genome. We have recently developed a workflow to sequence native, unamplified DNA and applied it to the smallest human chromosome, the Y chromosome. Here, we modify improve upon that workflow to increase DNA recovery from chromosome sorting as well as sequencing yield. We apply it to sequence and assemble the largest human chromosome - chromosome 1 - of a Chinese individual using a single Oxford Nanopore MinION flow cell. We generate a selective and highly continuous assembly whose continuity reaches into the order of magnitude of the human reference GRCh38. We then use this assembly to call candidate structural variants against the reference and find 685 putative novel SV candidates. We propose this workflow as a potential solution to assemble structurally complex chromosomes, or the study of very large plant or animal genomes that might challenge traditional assembly strategies.

Saved in:
Bibliographic Details
Main Authors: Kuderna, Lukas F. K., Solís-Moruno, Manuel, Batlle-Masó, Laura, Julià, Eva, Lizano, Esther, Anglada, Roger, Ramírez, Erika, Bote, Alex, Tormo, Marc, Marqués-Bonet, Tomàs, Fornas, Oscar, Casals, Ferran
Other Authors: Ministerio de Ciencia, Innovación y Universidades (España)
Format: artículo biblioteca
Language:English
Published: Frontiers Media 2020-01-09
Subjects:Chromosome enrichment, Nanopore sequencing, Chromosome sequencing, Chromosome sorting, Flow karyotyping, Structural variation, Genome assembly,
Online Access:http://hdl.handle.net/10261/218707
http://dx.doi.org/10.13039/501100011033
http://dx.doi.org/10.13039/501100003043
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100002809
http://dx.doi.org/10.13039/100000011
http://dx.doi.org/10.13039/501100003329
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-ibe-es-10261-218707
record_format koha
institution IBE ES
collection DSpace
country España
countrycode ES
component Bibliográfico
access En linea
databasecode dig-ibe-es
tag biblioteca
region Europa del Sur
libraryname Biblioteca del IBE España
language English
topic Chromosome enrichment
Nanopore sequencing
Chromosome sequencing
Chromosome sorting
Flow karyotyping
Structural variation
Genome assembly
Chromosome enrichment
Nanopore sequencing
Chromosome sequencing
Chromosome sorting
Flow karyotyping
Structural variation
Genome assembly
spellingShingle Chromosome enrichment
Nanopore sequencing
Chromosome sequencing
Chromosome sorting
Flow karyotyping
Structural variation
Genome assembly
Chromosome enrichment
Nanopore sequencing
Chromosome sequencing
Chromosome sorting
Flow karyotyping
Structural variation
Genome assembly
Kuderna, Lukas F. K.
Solís-Moruno, Manuel
Batlle-Masó, Laura
Julià, Eva
Lizano, Esther
Anglada, Roger
Ramírez, Erika
Bote, Alex
Tormo, Marc
Marqués-Bonet, Tomàs
Fornas, Oscar
Casals, Ferran
Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual
description Sorting of individual chromosomes by Flow Cytometry (flow-sorting) is an enrichment method to potentially simplify genome assembly by isolating chromosomes from the context of the genome. We have recently developed a workflow to sequence native, unamplified DNA and applied it to the smallest human chromosome, the Y chromosome. Here, we modify improve upon that workflow to increase DNA recovery from chromosome sorting as well as sequencing yield. We apply it to sequence and assemble the largest human chromosome - chromosome 1 - of a Chinese individual using a single Oxford Nanopore MinION flow cell. We generate a selective and highly continuous assembly whose continuity reaches into the order of magnitude of the human reference GRCh38. We then use this assembly to call candidate structural variants against the reference and find 685 putative novel SV candidates. We propose this workflow as a potential solution to assemble structurally complex chromosomes, or the study of very large plant or animal genomes that might challenge traditional assembly strategies.
author2 Ministerio de Ciencia, Innovación y Universidades (España)
author_facet Ministerio de Ciencia, Innovación y Universidades (España)
Kuderna, Lukas F. K.
Solís-Moruno, Manuel
Batlle-Masó, Laura
Julià, Eva
Lizano, Esther
Anglada, Roger
Ramírez, Erika
Bote, Alex
Tormo, Marc
Marqués-Bonet, Tomàs
Fornas, Oscar
Casals, Ferran
format artículo
topic_facet Chromosome enrichment
Nanopore sequencing
Chromosome sequencing
Chromosome sorting
Flow karyotyping
Structural variation
Genome assembly
author Kuderna, Lukas F. K.
Solís-Moruno, Manuel
Batlle-Masó, Laura
Julià, Eva
Lizano, Esther
Anglada, Roger
Ramírez, Erika
Bote, Alex
Tormo, Marc
Marqués-Bonet, Tomàs
Fornas, Oscar
Casals, Ferran
author_sort Kuderna, Lukas F. K.
title Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual
title_short Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual
title_full Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual
title_fullStr Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual
title_full_unstemmed Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual
title_sort flow sorting enrichment and nanopore sequencing of chromosome 1 from a chinese individual
publisher Frontiers Media
publishDate 2020-01-09
url http://hdl.handle.net/10261/218707
http://dx.doi.org/10.13039/501100011033
http://dx.doi.org/10.13039/501100003043
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100002809
http://dx.doi.org/10.13039/100000011
http://dx.doi.org/10.13039/501100003329
work_keys_str_mv AT kudernalukasfk flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT solismorunomanuel flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT batllemasolaura flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT juliaeva flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT lizanoesther flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT angladaroger flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT ramirezerika flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT botealex flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT tormomarc flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT marquesbonettomas flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT fornasoscar flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
AT casalsferran flowsortingenrichmentandnanoporesequencingofchromosome1fromachineseindividual
_version_ 1777668763943960576
spelling dig-ibe-es-10261-2187072021-12-28T15:37:16Z Flow Sorting Enrichment and Nanopore Sequencing of Chromosome 1 From a Chinese Individual Kuderna, Lukas F. K. Solís-Moruno, Manuel Batlle-Masó, Laura Julià, Eva Lizano, Esther Anglada, Roger Ramírez, Erika Bote, Alex Tormo, Marc Marqués-Bonet, Tomàs Fornas, Oscar Casals, Ferran Ministerio de Ciencia, Innovación y Universidades (España) Agencia Estatal de Investigación (España) European Commission Ministerio de Economía y Competitividad (España) Generalitat de Catalunya Howard Hughes Medical Institute Fundación "la Caixa" EMBO Chromosome enrichment Nanopore sequencing Chromosome sequencing Chromosome sorting Flow karyotyping Structural variation Genome assembly Sorting of individual chromosomes by Flow Cytometry (flow-sorting) is an enrichment method to potentially simplify genome assembly by isolating chromosomes from the context of the genome. We have recently developed a workflow to sequence native, unamplified DNA and applied it to the smallest human chromosome, the Y chromosome. Here, we modify improve upon that workflow to increase DNA recovery from chromosome sorting as well as sequencing yield. We apply it to sequence and assemble the largest human chromosome - chromosome 1 - of a Chinese individual using a single Oxford Nanopore MinION flow cell. We generate a selective and highly continuous assembly whose continuity reaches into the order of magnitude of the human reference GRCh38. We then use this assembly to call candidate structural variants against the reference and find 685 putative novel SV candidates. We propose this workflow as a potential solution to assemble structurally complex chromosomes, or the study of very large plant or animal genomes that might challenge traditional assembly strategies. This study was funded by grants RTI2018-096824-B-C22 from the Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades (Spain) and FEDER (EU) to OF and FC, SAF2015-68472-C2-2-R from the Ministerio de Economía y Competitividad (Spain) and FEDER (EU) to FC, the Centro de Excelencia Severo Ochoa, and by Direcció General de Recerca, Generalitat de Catalunya (2017SGR-702). TM-B is supported by BFU2017-86471-P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International Early Career, Obra Social “La Caixa” and Secretaria d'Universitats i Recerca and CERCA Programme del Departament d'Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880). LK is supported by an FPI fellowship associated with BFU2014-55090-P (MINECO/FEDER, UE) and by an EMBO Short-Term Fellowship STF-8286. LB-M is supported by a Formació de personal Investigador fellowship from Generalitat de Catalunya (2018_FI_B00072). MS-M is supported by the María de Maetzu Programme (MDM-2014-0370-16-3). Peer reviewed 2020-08-27T07:07:33Z 2020-08-27T07:07:33Z 2020-01-09 artículo http://purl.org/coar/resource_type/c_6501 Frontiers in Genetics 10: 1315 (2020) http://hdl.handle.net/10261/218707 10.3389/fgene.2019.01315 1664-8021 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100003043 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/501100002809 http://dx.doi.org/10.13039/100000011 http://dx.doi.org/10.13039/501100003329 31998370 en #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# #PLACEHOLDER_PARENT_METADATA_VALUE# info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096824-B-C22 RTI2018-096824-B-C22/AEI/10.13039/501100011033 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/SAF2015-68472-C2-2-R info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/BFU2017-86471-P BFU2017-86471-P/AEI/10.13039/501100011033 info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2014-55090-P info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MDM-2014-0370-16-3 Publisher's version https://doi.org/10.3389/fgene.2019.01315 Sí open Frontiers Media