Development of a FungalBraid Penicillium expansum-based expression system for the production of antifungal proteins in fungal biofactories

Fungal antifungal proteins (AFPs) have attracted attention as novel biofungicides. Their exploitation requires safe and cost-effective producing biofactories. Previously, Penicillium chrysogenum and Penicillium digitatum produced recombinant AFPs with the use of a P. chrysogenum-based expression system that consisted of the paf gene promoter, signal peptide (SP)-pro sequence and terminator. Here, the regulatory elements of the afpA gene encoding the highly produced PeAfpA from Penicillium expansum were developed as an expression system for AFP production through the FungalBraid platform. The afpA cassette was tested to produce PeAfpA and P. digitatum PdAfpB in P. chrysogenum and P. digitatum, and its efficiency was compared to that of the paf cassette. Recombinant PeAfpA production was only achieved using the afpA cassette, being P. chrysogenum a more efficient biofactory than P. digitatum. Conversely, P. chrysogenum only produced PdAfpB under the control of the paf cassette. In P. digitatum, both expression systems allowed PdAfpB production, with the paf cassette resulting in higher protein yields. Interestingly, these results did not correlate with the performance of both promoters in a luciferase reporter system. In conclusion, AFP production is a complex outcome that depends on the regulatory sequences driving afp expression, the fungal biofactory and the AFP sequence.

Saved in:
Bibliographic Details
Main Authors: Gandía, Mónica, Moreno Giménez, Elena, Giner Llorca, Moisés, Garrigues, Sandra, Ropero Pérez, Carolina, Locascio, Antonella, Martínez Culebras, Pedro V., Marcos López, José Francisco, Manzanares, Paloma
Other Authors: Ministerio de Ciencia e Innovación (España)
Format: artículo biblioteca
Language:English
Published: John Wiley & Sons 2022-01-27
Online Access:http://hdl.handle.net/10261/261612
http://dx.doi.org/10.13039/501100004837
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100003359
https://api.elsevier.com/content/abstract/scopus_id/85123689509
Tags: Add Tag
No Tags, Be the first to tag this record!