Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time

Analyses of the genetic bases of plant adaptation to climate changes, using genome-scan approaches, are often conducted on natural populations, under hypothesis of out-crossing reproductive regime. We report here on a study based on diachronic sampling (1980 and 2011) of the autogamous crop species, Oryza sativa and Oryza glaberrima, in the tropical forest and the Sudanian savannah of West Africa. First, using historical meteorological data we confirmed changes in temperatures (+ 1 °C on average) and rainfall regime (less predictable and reduced amount) in the target areas. Second, phenotyping the populations for phenology, we observed significantly earlier heading time in the 2010 samples. Third, implementing two genome-scan methods (one of which specially developed for selfing species) on genotyping by sequencing genotypic data of the two populations, we detected 31 independent selection footprints. Gene ontology analysis detected significant enrichment of these selection footprints in genes involved in reproductive processes. Some of them bore known heading time QTLs and genes, including OsGI, Hd1 and OsphyB. This rapid adaptive evolution, originated from subtle changes in the standing variation in genetic network regulating heading time, did not translate into predominance of multilocus genotypes, as it is often the case in selfing plants, and into notable selective sweeps. The high adaptive potential observed results from the multiline genetic structure of the rice landraces, and the rather large and imbricated genetic diversity of the rice meta-population at the farm, the village and the region levels, that hosted the adaptive variants in multiple genetic backgrounds before the advent of the environmental selective pressure. Our results illustrate the evolution of in situ diversity through processes of human and natural selection, and provide a model for rice breeding and cultivars deployment strategies aiming resilience to climate changes. It also calls for further development of population genetic models for adaptation of plant populations to environmental changes. To our best knowledge, this is the first study dealing with climate-changes' selective footprint in crops.

Saved in:
Bibliographic Details
Main Authors: Ahmadi, Nourollah, Barry, Mamadou Billo, Frouin, Julien, de Navascués, Miguel, Toure, Mamadou Aminata
Format: article biblioteca
Language:eng
Subjects:P40 - Météorologie et climatologie, F30 - Génétique et amélioration des plantes, Oryza sativa, changement climatique, adaptation aux changements climatiques, génétique des populations, variation génétique, Oryza glaberrima, marqueur génétique, variété indigène, adaptation, génotype, génome, phénologie, phytogénétique, Oryza, savane, http://aims.fao.org/aos/agrovoc/c_5438, http://aims.fao.org/aos/agrovoc/c_1666, http://aims.fao.org/aos/agrovoc/c_1374567058134, http://aims.fao.org/aos/agrovoc/c_34326, http://aims.fao.org/aos/agrovoc/c_15975, http://aims.fao.org/aos/agrovoc/c_5436, http://aims.fao.org/aos/agrovoc/c_24030, http://aims.fao.org/aos/agrovoc/c_32886, http://aims.fao.org/aos/agrovoc/c_117, http://aims.fao.org/aos/agrovoc/c_3225, http://aims.fao.org/aos/agrovoc/c_3224, http://aims.fao.org/aos/agrovoc/c_5774, http://aims.fao.org/aos/agrovoc/c_49985, http://aims.fao.org/aos/agrovoc/c_5435, http://aims.fao.org/aos/agrovoc/c_6825,
Online Access:http://agritrop.cirad.fr/606728/
http://agritrop.cirad.fr/606728/1/s12284-023-00633-4.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id dig-cirad-fr-606728
record_format koha
institution CIRAD FR
collection DSpace
country Francia
countrycode FR
component Bibliográfico
access En linea
databasecode dig-cirad-fr
tag biblioteca
region Europa del Oeste
libraryname Biblioteca del CIRAD Francia
language eng
topic P40 - Météorologie et climatologie
F30 - Génétique et amélioration des plantes
Oryza sativa
changement climatique
adaptation aux changements climatiques
génétique des populations
variation génétique
Oryza glaberrima
marqueur génétique
variété indigène
adaptation
génotype
génome
phénologie
phytogénétique
Oryza
savane
http://aims.fao.org/aos/agrovoc/c_5438
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_1374567058134
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_5436
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_32886
http://aims.fao.org/aos/agrovoc/c_117
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_3224
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_5435
http://aims.fao.org/aos/agrovoc/c_6825
P40 - Météorologie et climatologie
F30 - Génétique et amélioration des plantes
Oryza sativa
changement climatique
adaptation aux changements climatiques
génétique des populations
variation génétique
Oryza glaberrima
marqueur génétique
variété indigène
adaptation
génotype
génome
phénologie
phytogénétique
Oryza
savane
http://aims.fao.org/aos/agrovoc/c_5438
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_1374567058134
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_5436
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_32886
http://aims.fao.org/aos/agrovoc/c_117
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_3224
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_5435
http://aims.fao.org/aos/agrovoc/c_6825
spellingShingle P40 - Météorologie et climatologie
F30 - Génétique et amélioration des plantes
Oryza sativa
changement climatique
adaptation aux changements climatiques
génétique des populations
variation génétique
Oryza glaberrima
marqueur génétique
variété indigène
adaptation
génotype
génome
phénologie
phytogénétique
Oryza
savane
http://aims.fao.org/aos/agrovoc/c_5438
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_1374567058134
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_5436
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_32886
http://aims.fao.org/aos/agrovoc/c_117
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_3224
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_5435
http://aims.fao.org/aos/agrovoc/c_6825
P40 - Météorologie et climatologie
F30 - Génétique et amélioration des plantes
Oryza sativa
changement climatique
adaptation aux changements climatiques
génétique des populations
variation génétique
Oryza glaberrima
marqueur génétique
variété indigène
adaptation
génotype
génome
phénologie
phytogénétique
Oryza
savane
http://aims.fao.org/aos/agrovoc/c_5438
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_1374567058134
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_5436
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_32886
http://aims.fao.org/aos/agrovoc/c_117
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_3224
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_5435
http://aims.fao.org/aos/agrovoc/c_6825
Ahmadi, Nourollah
Barry, Mamadou Billo
Frouin, Julien
de Navascués, Miguel
Toure, Mamadou Aminata
Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time
description Analyses of the genetic bases of plant adaptation to climate changes, using genome-scan approaches, are often conducted on natural populations, under hypothesis of out-crossing reproductive regime. We report here on a study based on diachronic sampling (1980 and 2011) of the autogamous crop species, Oryza sativa and Oryza glaberrima, in the tropical forest and the Sudanian savannah of West Africa. First, using historical meteorological data we confirmed changes in temperatures (+ 1 °C on average) and rainfall regime (less predictable and reduced amount) in the target areas. Second, phenotyping the populations for phenology, we observed significantly earlier heading time in the 2010 samples. Third, implementing two genome-scan methods (one of which specially developed for selfing species) on genotyping by sequencing genotypic data of the two populations, we detected 31 independent selection footprints. Gene ontology analysis detected significant enrichment of these selection footprints in genes involved in reproductive processes. Some of them bore known heading time QTLs and genes, including OsGI, Hd1 and OsphyB. This rapid adaptive evolution, originated from subtle changes in the standing variation in genetic network regulating heading time, did not translate into predominance of multilocus genotypes, as it is often the case in selfing plants, and into notable selective sweeps. The high adaptive potential observed results from the multiline genetic structure of the rice landraces, and the rather large and imbricated genetic diversity of the rice meta-population at the farm, the village and the region levels, that hosted the adaptive variants in multiple genetic backgrounds before the advent of the environmental selective pressure. Our results illustrate the evolution of in situ diversity through processes of human and natural selection, and provide a model for rice breeding and cultivars deployment strategies aiming resilience to climate changes. It also calls for further development of population genetic models for adaptation of plant populations to environmental changes. To our best knowledge, this is the first study dealing with climate-changes' selective footprint in crops.
format article
topic_facet P40 - Météorologie et climatologie
F30 - Génétique et amélioration des plantes
Oryza sativa
changement climatique
adaptation aux changements climatiques
génétique des populations
variation génétique
Oryza glaberrima
marqueur génétique
variété indigène
adaptation
génotype
génome
phénologie
phytogénétique
Oryza
savane
http://aims.fao.org/aos/agrovoc/c_5438
http://aims.fao.org/aos/agrovoc/c_1666
http://aims.fao.org/aos/agrovoc/c_1374567058134
http://aims.fao.org/aos/agrovoc/c_34326
http://aims.fao.org/aos/agrovoc/c_15975
http://aims.fao.org/aos/agrovoc/c_5436
http://aims.fao.org/aos/agrovoc/c_24030
http://aims.fao.org/aos/agrovoc/c_32886
http://aims.fao.org/aos/agrovoc/c_117
http://aims.fao.org/aos/agrovoc/c_3225
http://aims.fao.org/aos/agrovoc/c_3224
http://aims.fao.org/aos/agrovoc/c_5774
http://aims.fao.org/aos/agrovoc/c_49985
http://aims.fao.org/aos/agrovoc/c_5435
http://aims.fao.org/aos/agrovoc/c_6825
author Ahmadi, Nourollah
Barry, Mamadou Billo
Frouin, Julien
de Navascués, Miguel
Toure, Mamadou Aminata
author_facet Ahmadi, Nourollah
Barry, Mamadou Billo
Frouin, Julien
de Navascués, Miguel
Toure, Mamadou Aminata
author_sort Ahmadi, Nourollah
title Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time
title_short Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time
title_full Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time
title_fullStr Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time
title_full_unstemmed Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time
title_sort genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time
url http://agritrop.cirad.fr/606728/
http://agritrop.cirad.fr/606728/1/s12284-023-00633-4.pdf
work_keys_str_mv AT ahmadinourollah genomescanofricelandracepopulationscollectedacrosstimerevealedclimatechangesselectivefootprintsinthegenesnetworkregulatingfloweringtime
AT barrymamadoubillo genomescanofricelandracepopulationscollectedacrosstimerevealedclimatechangesselectivefootprintsinthegenesnetworkregulatingfloweringtime
AT frouinjulien genomescanofricelandracepopulationscollectedacrosstimerevealedclimatechangesselectivefootprintsinthegenesnetworkregulatingfloweringtime
AT denavascuesmiguel genomescanofricelandracepopulationscollectedacrosstimerevealedclimatechangesselectivefootprintsinthegenesnetworkregulatingfloweringtime
AT touremamadouaminata genomescanofricelandracepopulationscollectedacrosstimerevealedclimatechangesselectivefootprintsinthegenesnetworkregulatingfloweringtime
_version_ 1792500650380099584
spelling dig-cirad-fr-6067282024-01-29T06:14:45Z http://agritrop.cirad.fr/606728/ http://agritrop.cirad.fr/606728/ Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time. Ahmadi Nourollah, Barry Mamadou Billo, Frouin Julien, de Navascués Miguel, Toure Mamadou Aminata. 2023. Rice, 16:15, 22 p.https://doi.org/10.1186/s12284-023-00633-4 <https://doi.org/10.1186/s12284-023-00633-4> Genome scan of rice landrace populations collected across time revealed climate changes' selective footprints in the genes network regulating flowering time Ahmadi, Nourollah Barry, Mamadou Billo Frouin, Julien de Navascués, Miguel Toure, Mamadou Aminata eng 2023 Rice P40 - Météorologie et climatologie F30 - Génétique et amélioration des plantes Oryza sativa changement climatique adaptation aux changements climatiques génétique des populations variation génétique Oryza glaberrima marqueur génétique variété indigène adaptation génotype génome phénologie phytogénétique Oryza savane http://aims.fao.org/aos/agrovoc/c_5438 http://aims.fao.org/aos/agrovoc/c_1666 http://aims.fao.org/aos/agrovoc/c_1374567058134 http://aims.fao.org/aos/agrovoc/c_34326 http://aims.fao.org/aos/agrovoc/c_15975 http://aims.fao.org/aos/agrovoc/c_5436 http://aims.fao.org/aos/agrovoc/c_24030 http://aims.fao.org/aos/agrovoc/c_32886 http://aims.fao.org/aos/agrovoc/c_117 http://aims.fao.org/aos/agrovoc/c_3225 http://aims.fao.org/aos/agrovoc/c_3224 http://aims.fao.org/aos/agrovoc/c_5774 http://aims.fao.org/aos/agrovoc/c_49985 http://aims.fao.org/aos/agrovoc/c_5435 http://aims.fao.org/aos/agrovoc/c_6825 Analyses of the genetic bases of plant adaptation to climate changes, using genome-scan approaches, are often conducted on natural populations, under hypothesis of out-crossing reproductive regime. We report here on a study based on diachronic sampling (1980 and 2011) of the autogamous crop species, Oryza sativa and Oryza glaberrima, in the tropical forest and the Sudanian savannah of West Africa. First, using historical meteorological data we confirmed changes in temperatures (+ 1 °C on average) and rainfall regime (less predictable and reduced amount) in the target areas. Second, phenotyping the populations for phenology, we observed significantly earlier heading time in the 2010 samples. Third, implementing two genome-scan methods (one of which specially developed for selfing species) on genotyping by sequencing genotypic data of the two populations, we detected 31 independent selection footprints. Gene ontology analysis detected significant enrichment of these selection footprints in genes involved in reproductive processes. Some of them bore known heading time QTLs and genes, including OsGI, Hd1 and OsphyB. This rapid adaptive evolution, originated from subtle changes in the standing variation in genetic network regulating heading time, did not translate into predominance of multilocus genotypes, as it is often the case in selfing plants, and into notable selective sweeps. The high adaptive potential observed results from the multiline genetic structure of the rice landraces, and the rather large and imbricated genetic diversity of the rice meta-population at the farm, the village and the region levels, that hosted the adaptive variants in multiple genetic backgrounds before the advent of the environmental selective pressure. Our results illustrate the evolution of in situ diversity through processes of human and natural selection, and provide a model for rice breeding and cultivars deployment strategies aiming resilience to climate changes. It also calls for further development of population genetic models for adaptation of plant populations to environmental changes. To our best knowledge, this is the first study dealing with climate-changes' selective footprint in crops. article info:eu-repo/semantics/article Journal Article info:eu-repo/semantics/publishedVersion http://agritrop.cirad.fr/606728/1/s12284-023-00633-4.pdf text cc_by info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/ https://doi.org/10.1186/s12284-023-00633-4 10.1186/s12284-023-00633-4 info:eu-repo/semantics/altIdentifier/doi/10.1186/s12284-023-00633-4 info:eu-repo/semantics/altIdentifier/purl/https://doi.org/10.1186/s12284-023-00633-4 info:eu-repo/semantics/reference/purl/https://doi.org/10.18167/DVN1/NKHS1U