A numerical investigation into the influence of soil type and root architecture on tree anchorage
The influence of root morphology and soil type on the mechanical behaviour of tree anchorage was investigated through numerical modelling. We developed a simple computer program to construct three-dimensional virtual root architectural patterns. This tool was used to build four schematic patterns: heart-, tap-, herringbone- and plate-like root systems. Each of these rooting types was characterized by specific branching characteristics. However, the total volume (proportional to the wood biomass) and material properties were kept constant. The finite element method was used to calculate the mechanical response of root/soil systems when the stem was subjected to bending forces. The overturning resistance of the four schematic root patterns was determined in four different idealistic soil types. These soils were based on Mohr-Coulomb plasticity models. Results showed that soil internal friction modified the position of the rotation axis during tilting of the root/soil plate. Rooting depth was a determinant parameter in sandy-like soils. Overturning resistance was greatest in heart- and tap-root systems whatever the soil type. However, the heart root system was more resistant on clay-like soil whereas the tap root system was more resistant on sandy-like soil. Herringbone and plate root systems were twice as less resistant on clay soils and 1.5 times less resistant on sandy soils when compared to heart and tap-like structures.