Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment
Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments.
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Journal Article biblioteca |
Language: | English |
Published: |
Springer
2021-08-19
|
Subjects: | data, abiotic stress, breeding, climate change, biodiversity, participatory research, plant breeding, triticum durum, wheat, estrés abiotico, mejora, cambio climatico, |
Online Access: | https://hdl.handle.net/10568/114893 https://doi.org/10.1038/s42003-021-02463-w |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
dig-cgspace-10568-114893 |
---|---|
record_format |
koha |
spelling |
dig-cgspace-10568-1148932023-12-08T19:36:04Z Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment Sousa, Kauê de Etten, Jacob van Poland, Jesse A. Fadda, Carlo Jannink, Jean-Luc Gebrehawaryat Kidane, Yosef Lakew, Basazen Fantahun Mengistu, Dejene Kassahun Pè, Mario Enrico Solberg, Svein Øivind Dell’Acqua, Matteo data abiotic stress breeding climate change biodiversity participatory research plant breeding triticum durum wheat estrés abiotico mejora cambio climatico Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments. 2021-08-19 2021-09-07T08:58:21Z 2021-09-07T08:58:21Z Journal Article de Sousa, K.; van Etten, J.; Poland, J.; Fadda, C.; Jannink, J.L.; Gebrehawaryat, Y.; Lakew, B.F.; Mengistu, D.K.; Pè, M.E.; Solberg, S.Ø.; Dell'Acqua, M. (2021) Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment. Communications Biology 4: 944. 9 p. ISSN: 2399-3642 2399-3642 https://hdl.handle.net/10568/114893 https://doi.org/10.1038/s42003-021-02463-w en https://hdl.handle.net/10568/108545 CC-BY-4.0 Open Access 9 p. application/pdf Springer Communications Biology |
institution |
CGIAR |
collection |
DSpace |
country |
Francia |
countrycode |
FR |
component |
Bibliográfico |
access |
En linea |
databasecode |
dig-cgspace |
tag |
biblioteca |
region |
Europa del Oeste |
libraryname |
Biblioteca del CGIAR |
language |
English |
topic |
data abiotic stress breeding climate change biodiversity participatory research plant breeding triticum durum wheat estrés abiotico mejora cambio climatico data abiotic stress breeding climate change biodiversity participatory research plant breeding triticum durum wheat estrés abiotico mejora cambio climatico |
spellingShingle |
data abiotic stress breeding climate change biodiversity participatory research plant breeding triticum durum wheat estrés abiotico mejora cambio climatico data abiotic stress breeding climate change biodiversity participatory research plant breeding triticum durum wheat estrés abiotico mejora cambio climatico Sousa, Kauê de Etten, Jacob van Poland, Jesse A. Fadda, Carlo Jannink, Jean-Luc Gebrehawaryat Kidane, Yosef Lakew, Basazen Fantahun Mengistu, Dejene Kassahun Pè, Mario Enrico Solberg, Svein Øivind Dell’Acqua, Matteo Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment |
description |
Crop breeding must embrace the broad diversity of smallholder agricultural systems to ensure food security to the hundreds of millions of people living in challenging production environments. This need can be addressed by combining genomics, farmers’ knowledge, and environmental analysis into a data-driven decentralized approach (3D-breeding). We tested this idea as a proof-of-concept by comparing a durum wheat (Triticum durum Desf.) decentralized trial distributed as incomplete blocks in 1,165 farmer-managed fields across the Ethiopian highlands with a benchmark representing genomic prediction applied to conventional breeding. We found that 3D-breeding could double the prediction accuracy of the benchmark. 3D-breeding could identify genotypes with enhanced local adaptation providing superior productive performance across seasons. We propose this decentralized approach to leverage the diversity in farmer fields and complement conventional plant breeding to enhance local adaptation in challenging crop production environments. |
format |
Journal Article |
topic_facet |
data abiotic stress breeding climate change biodiversity participatory research plant breeding triticum durum wheat estrés abiotico mejora cambio climatico |
author |
Sousa, Kauê de Etten, Jacob van Poland, Jesse A. Fadda, Carlo Jannink, Jean-Luc Gebrehawaryat Kidane, Yosef Lakew, Basazen Fantahun Mengistu, Dejene Kassahun Pè, Mario Enrico Solberg, Svein Øivind Dell’Acqua, Matteo |
author_facet |
Sousa, Kauê de Etten, Jacob van Poland, Jesse A. Fadda, Carlo Jannink, Jean-Luc Gebrehawaryat Kidane, Yosef Lakew, Basazen Fantahun Mengistu, Dejene Kassahun Pè, Mario Enrico Solberg, Svein Øivind Dell’Acqua, Matteo |
author_sort |
Sousa, Kauê de |
title |
Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment |
title_short |
Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment |
title_full |
Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment |
title_fullStr |
Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment |
title_full_unstemmed |
Data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment |
title_sort |
data-driven decentralized breeding increases prediction accuracy in a challenging crop production environment |
publisher |
Springer |
publishDate |
2021-08-19 |
url |
https://hdl.handle.net/10568/114893 https://doi.org/10.1038/s42003-021-02463-w |
work_keys_str_mv |
AT sousakauede datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT ettenjacobvan datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT polandjessea datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT faddacarlo datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT janninkjeanluc datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT gebrehawaryatkidaneyosef datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT lakewbasazenfantahun datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT mengistudejenekassahun datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT pemarioenrico datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT solbergsveinøivind datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment AT dellacquamatteo datadrivendecentralizedbreedingincreasespredictionaccuracyinachallengingcropproductionenvironment |
_version_ |
1787228208217718784 |